最新新闻:
  • 一文让你分清数据管理与数据治理
  • 一份更好的云灾难恢复计划指南
  • 机器学习已经悄悄潜入你的生活,你可能还没有发现
  • 为什么人工智能可以下好围棋却写不好诗?答案在这
  • 启动大数据项目之前需要问的5个问题
  • 数据高端人才十一项全球最具权威的大数据资质认证
  • 云技能黑带:点评十大顶级云计算认证
  • 为什么大数据工程师会在2017年越过越滋润?
  • “新零售”的新能力
  • 关于“大数据”的15条干货思考
  • 如何设计成功而有价值的数据可视化
  • 论数据中心德赢官网vwin工作的提升技巧
  • 数据中心网络布线工程必备七大件
  • 网络钓鱼进化之路
  • 为什么我们不能再过度依赖网关了?
  • 对象存储九大关键特征
  • 人工智能会统治世界吗?马克思早就给出了回答
  • 企业如何实现互联网+业务与IT的融合
  • PaaS是位好同志,但SaaS公司搞PaaS却不大靠谱
  • 如何构建一个私有存储云
  • 这是网络安全的基石:密码学2016大盘点
  • 为何企业无法从数据科学中真正获得价值?
  • 云灾难恢复服务:客户想要“DR即服务”
  • 展望2017年:这些技术将冲击我们的生活
  • 2017年云计算和数据中心五大趋势
  • 年关将至,历数今年悲催的宕机灾难
  • 2017科技行业七大趋势:无人机远途送货 5G测试全面
  • 又到年终,看九大企业技术趋势
  • CIO们的2017——5大领域4个技术将遭遇颠覆
  • 大数据失败案例提醒:8个不能犯的错误
  • CIO:IT从德赢官网vwin到运营
  • 面对网络边界的迷失?在虚拟环境获得真实可视性是
  • 马云乌镇演讲实录:未来30年是谁的天下?
  • AI技术大力冲击就业市场 哪些工作将被自动化取代?
  • 2016热门数据存储技术
  • CIO:淘汰你的不是新技术,而是旧思维
  • 如何成为数据分析师
  • 十大IT工作和工程
  • 三大恶意软件的绝密藏身之地:固件、控制器与BIOS
  • 网络与应用基础设施如何协同发展
  • 云端迁移需注意的9大要点
  • 成功的安全分析你需要注意这五个要素
  • 没有IT流程文档 企业将为IT所“绑架”
  • 网络安全:要通过去,晓未来
  • 让IT安全人员夜不能寐的11个数据问题
  • 人工智能、机器学习、深度学习的区别在哪?
  • 如何让云德赢官网vwin变得简单
  • 互联网下半场战争已打响 谁会成为下一个超级独角兽
  • 奥运看完看什么?这里有关于奥运背后的大数据
  • 思科第四财季净利同比增21% 宣布裁员5500人
  • 数据中心网络德赢官网vwin一指禅
  • 数据中心虚拟化所必备的条件
  • 技术分享:十大服务器虚拟化优化窍门揭秘
  • 国内最适宜建设数据中心地区,原来在这里
  • 智能时代:物联网10个商业模式
  • 传统咨询业必死,拥抱大数据才是未来
  • 微软纳德拉:自然语言对话将淘汰菜单 成为APP用户
  • 解密 Uber 数据团队的基础数据架构优化之路
  • 大数据挖掘价值在哪里?
  • 物联网未来十年将重构这八大行业
  • 中国CIO肩负三大任务
  • CIO:云计算数据中心德赢官网vwin管理要点
  • 云计算:如何辨识真正的云业务
  • 如何看待互联网时代的网络金融安全?
  • “互联网+”的数据地图:沟壑的显现与超车的可能
  • 大数据与统计新思维
  • AT&T如何成为美国物联网市场老大?
  • 全球大数据发展呈现六大趋势
  • 传统企业将向大规模定制转型升级
  • 云计算市场未来将会是谁的天下?
  • 凯文·凯利:大数据时代没有旁观者
  • IaaS市场大整合:云用户喜忧参半
  • 大牛数据分析师养成日记
  • 一大波威胁报告来袭,我们从中能get到什么?
  • 如何建立各部门都满意的影子IT战略
  • 我经历的IT公司面试及离职感受
  • 恶意软件逃避反病毒引擎的几个新方法
  • 德赢官网vwin好数据中心的四大法宝
  • 云管理成功的关键:应用工作流
  • 豪车虚拟钥匙虽然很炫酷 但也给了黑客机会
  • 数据中心业务迁移面临的五大挑战
  • 在你想不到的暗网上,黑客雇佣市场正蓬勃发展
  • 12年程序员职业生涯得到的12个经验教训
  • 人人都谈大数据,你考虑过小数据的感受吗?
  • 作为数据科学家应该知道的11件事
  • 提高攻击成本的“网络安全检查表”有多牛?
  • 确保AWS安全:避免犯常见错误
  • 从菜鸟成为数据科学家的 9步养成方案
  • 数据分析工作常见的七种错误及规避技巧
  • 分析信息化现状 企业IT规划成关键
  • 这些数据科学技能,才是老板们最想要的
  • 职业生涯提升计划:迈入数据科学新世界
  • 你get了无数技能,为什么一事无成
  • 【概念】IT德赢官网vwin服务的概念与维保的区别
  • 见招拆招 六招抓住代维违规“黑手”
  • 数据中心德赢官网vwin工作的提升技巧
  • 如何做好高效IT德赢官网vwin
  • 高效能人士的七个习惯
  • 云计算如何改变IT德赢官网vwin管理的未来
  • 如何做好IT德赢官网vwin管理
  • 如何做好大型数据中心的德赢官网vwin
  • 有效的项目管理(三)
  • 有效的项目管理(二)
  • 2016年的十大技术趋势
  • 有效的项目管理(一)
  • 新浪创业&IT桔子盘点:2015年创业格局盘点上篇
  • 微软将在下周一口气停止对IE8 IE9和IE10的支持
  • 七字诀,不再憋屈的德赢官网vwin
  • 高效数据中心德赢官网vwin团队的7个习惯
  • 联通电信合并 促进竞争还是加强垄断?
  • 智能家居是CES重头戏 但物联网通信才是关键
  • 山东vwin德赢app下载恭祝大家元旦快乐
  • 杨元庆:应尽快出台个人信息保护法
  • IBM称不会放弃硬件业务
  • 习近平:把我国从网络大国建设成为网络强国
  • 传IBM启动新一轮裁员:至少波及1.3万人
  • 甲骨文与IBM纷纷展开并购 云计算倒逼转型加速
  • vwin德赢app下载公司恭祝大家新春快乐
  • vwin德赢app下载公司开通全国统一客服电话4008531853
  • vwin德赢app下载公司正式开通新浪企业微博
  • vwin德赢app下载微信订阅号正式上线
  • 山东vwin德赢app下载网络技术有限公司成功签约山东联通Sybase
  • 云计算战争中国开打:国际巨头落地公有云
  • 虚拟运营带给中国通信业的六个变化
  • 英特尔将推出15核服务器芯片
  • 4G发牌深入分析:移动互联网公司受益最大
  • 英将发报告“积极评价”华为 解除“安全警报”
  • 电子卖场衰落谋转型:IT+美食+时尚成趋势
  • 数据显示Win8全球市场份额继续下滑
  • 高交会风向:科技“恋不上”资本
  • 山东vwin德赢app下载网络技术有限公司成功中标济南移动服务器
  • 山东vwin德赢app下载网络技术有限公司顺利通过一般纳税人认定
  • 山东vwin德赢app下载网络技术有限公司正式开通官方网站
  • 人工智能、机器学习、深度学习的区别在哪?
    作者:人称T客   来源:人称T客   发表时间:2016-9-18  点击:1857

    有人说,人工智能(ArtificialIntelligence)是未来。人工智能是科幻小说。人工智能已经是我们日常生活的一部分。所有这些陈述都ok,这主要取决于你所设想的人工智能是哪一类。

      例如,今年早些时候,GoogleDeepMind的Alphago程序击败了韩国围棋大师李世乭九段。人工智能、机器学习和深度学习这些词成为媒体热词,用来描述DeepMind是如何获得成功的。尽管三者都是AlphaGo击败李世乭的因素,但它们不是同一概念。

      区别三者最简单的方法:想象同心圆,人工智能(AI)是半径最大的同心圆,向内是机器学习(MachineLearning),最内是深入学习(DeepLearning)。


      从概念的而提出到繁荣

      自从几位计算机科学家在1956年的达特茅斯会议上提到这个词以后,人工智能就萦绕在实验研究者们心中,不断酝酿。在此后的几十年里,人工智能被标榜为成就人类文明美好未来的关键。

      在过去的几年里,特别是2015以来,人工智能开始大爆发。这在很大程度上提高了GPU的广泛可用性,使得并行处理速度越来越快,使用更便宜,而且功能更强大。整个大数据运动拥有无限的存储和大量的数据:图像,文本,交易,映射数据等等。

      人工智能——机器所赋予的人的智能

      早在1956年夏天的会议上,人工智能先驱者的梦想是建立一个由新兴计算机启用的复杂的机器,具有与人的智能相似的特征。这是我们认为的「强人工智能」(GeneralAI),而神话般的机器则会拥有我们所有的感知,甚至更多,并且像人类一样思考。你已经在电影中见过这些机器无休止地运动,像朋友如C-3PO,或者敌人如终结者。一般的人工智能机器仍然只是出现在电影和科幻小说中。

      我们目前可以实现的还是局限于「弱人工智能」(NarrowAI)。这些技术能够像人类一样执行特定的任务,或者比人类做的更好。像Pinterest上的图像分类,Facebook上的人脸识别等。

      这些都是弱人工智能实践中的例子。这些技术展示了人类智力的一些方面。但如何展示?这些智力是从哪里来的?这些问题促使我们进入到下一个阶段,机器学习。

      机器学习——一种实现人工智能的方法

      机器学习最根本的点在于使用算法来分析数据的实践、学习,然后对真实的事件作出决定或预测。而不是用一组特定的指令生成的硬编码软件程序来解决特定任务,机器是通过使用大量的数据和算法来「训练」,这样就给了它学习如何执行任务的能力。

      机器学习是早期人工智能人群思考的产物,多年来形成的算法包括决策树学习、归纳逻辑编程、聚类、强化学习、贝叶斯网络等等。正如我们所知,所有这些都没有实现强人工智能的最终目标,而早期的机器学习方法甚至连弱人工智能都没有触及到。

      事实证明,多年来机器学习的最佳应用领域之一是计算机视觉,尽管仍然需要大量的手工编码来完成这项工作。人们会去写手工编码分类器,如边缘检测滤波器,以便程序可以识别一个目标的启动和停止;进行形状检测以确定它是否有八个侧面;同时确保分类器能够识别字母「s-t-o-p.」从那些手工编码分类器中,机器就会开发算法使得图像和「学习」更有意义,用来确定这是否是一个停止标志。

      结果还算不错,但这还不够。特别是在雾天当标志不那么清晰,或有一棵树掩盖了标志的一部分时,就难以成功了。还有一个原因,计算机视觉和图像检测还不能与人类相媲美,它太脆弱,太容易受到周围环境的影响。

      随着时间的推移,学习算法改变了这一切。

      深度学习——一种实现机器学习的技术

      放猫(HerdingCats):YouTube视频抓拍的猫的形象是深度学习的第一次突破性展示

      在过去的几十年中,早期机器学习的另一种算法是人工神经网络。神经网络的灵感来自于我们对人类大脑生物学的理解:所有这些神经元之间的相互联系。在一定的物理距离内,生物大脑中的任何神经元可以连接到其他神经元,而人工神经网络有离散的层、连接和数据传播的方向。

      例如,你可以把一个图像分割成很多部分,这些可以输入到神经网络的第一层。在第一层中的单个神经元,然后将数据传递到第二层。第二层神经元做它的任务,等等,直到最后一层,那么最终结果就产生了。

      每个神经元都为其输入分配权重,分配的权重正确与否与执行的任务相关。结果,最终的输出由所有的权重所决定。这样,还是以「停止」标志牌为例。将「停止」标志牌图像的元素抽离分析,然后由神经元「检查」:其八边形的外形,消防车火红的颜色,鲜明的字母,交通标志的大小,处于运动或静止的状态。神经网络主要任务是总结是否是个停止标志。随即,基于权重、经过深思熟虑「概率向量」的概念出现。该案例中,该系统中86%的可能是停止标志,7%的可能是速度限制标志,5%的可能性是挂在树上的风筝等等。这样,网络结构便会告知神经网络是否正确。

      但这个例子还是非常超前。因为直到最近,神经网络还是被人工智能研究所忽略。实际上,在人工智能出现之初,神经网络就已经显现了,在「智能」方面还是产生很小的价值。问题是甚至最基本的神经网络都是靠大量的运算。不过,多伦多大学的GeoffreyHinton领导的一个研究小组始终专注于其中,最终实现以超算为目标的并行算法的运算且概念的证明,但直到GPU得到广泛利用,这些承诺才得以实现。

      回到之前「停止」标志的例子。神经网络是被调制或「训练」出来的,并且不时遇到错误的应答。它所需要的就是训练。需要呈现成百上千甚至上百万的图像,直到神经元输入的权重被准确调制,那么实际上每次都能得到正确的信息,无论是否有雾,无论晴天还是雨天。只有在那一点,神经网络才学会一个停止标志是什么样的,Facebook上你妈妈的脸是什么样,又或者是吴恩达(AndrewNg)教授2012年在Google上学习到的猫的样子。

      吴恩达的突破在于将这些神经网络显着增大,增加了层数和神经元,并通过系统的训练运行大量的数据。在吴教授所举案例中,数据就是YouTube视频中1000万张图像。他将深度学习中添加了「深度」,也就是这些神经网络中的所有层。

      通过在某些场景中深度学习,机器训练的图像识别要比人做得好:从猫到辨别血液中癌症的指标,再到核磁共振成像中肿瘤。Google的AlphaGo先是学会了如何下棋,然后它与自己下棋训练。通过不断地与自己下棋,反复练习,以此训练自己的神经网络。

      深度学习,赋予人工智能光明的未来

      深度学习使得许多机器学习应用得以实现,并拓展了人工智能的整个领域。深度学习一一实现了各种任务,并使得所有的机器辅助变成可能。无人驾驶汽车、预防性医疗保健、甚至的更好的电影推荐,都触手可及或即将成为现实。人工智能就在现在,也在未来。有了深度学习,人工智能可能甚至达到像我们畅想的科幻小说一样效果。我拿走了你的C-3PO,当然,你有《终结者》就行。(责编:pingxiaoli)

    获取更多专业资讯

    微信扫一扫

    服务项目

    维保德赢官网vwin服务

    信息系统集成服务

    机房搬迁服务

     
     
     
     
    电话:
    0531-88818533
    客服QQ
    2061058957
    1905215487